A simple recurrence formula for the number of rooted maps on surfaces by edges and genus

نویسندگان

  • Sean Carrell
  • Guillaume Chapuy
چکیده

We establish a simple recurrence formula for the number Qg of rooted orientable maps counted by edges and genus. The formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It gives by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large g. The formula is similar in look to the one discovered by Goulden and Jackson for triangulations (although the latter does not rely on an additional Tutte equation). Both of them have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved – should such an interpretation exist, the history of bijective methods for maps would tend to show that the case treated here is easier to start with than the one of triangulations. Résumé. Nous établissons une formule de récurrence simple pour le nombre Qn de cartes enracinées de genre g à n arêtes. Cette formule est une conséquence relativement simple du fait que la série génératrice des cartes biparties est une solution de l’équation KP et d’une équation de Tutte, et elle était apparemment passée inaperçue jusque là. Elle donne de loin le moyen le plus rapide pour calculer ces nombres, en particulier quand g est grand. La formule est d’apparence similaire à celle découverte par Goulden et Jackson pour les triangulations (quoique cette dernière ne repose pas sur une équation de Tutte additionnelle). Les deux formules ont une saveur très combinatoire, mais trouver une interprétation bijective reste un problème ouvert – mais si une telle interprétation existe, l’histoire des méthodes bijectives pour les cartes tendrait à montrer que le cas traité ici est plus facile pour commencer que celui des triangulations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simple recurrence formulas to count maps on orientable surfaces

We establish a simple recurrence formula for the number Qg of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qg (x) where x is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers M i,j g that count maps by genus, vertices, and faces. These formulas gi...

متن کامل

Enumeration of unrooted orientable maps of arbitrary genus by number of edges and vertices

A genus-g map is a 2-cell embedding of a connected graph on a closed, orientable surface of genus g without boundary, that is, a sphere with g handles. Two maps are equivalent if they are related by a homeomorphism between their embedding surfaces that takes the vertices, edges and faces of one map into the vertices, edges and faces, respectively, of the other map, and preserves the orientation...

متن کامل

A bijection for covered maps on orientable surfaces

Unicellular maps are a natural generalisation of plane trees to higher genus surfaces. In this article we study covered maps, which are maps together with a distinguished unicellular spanning submap. We prove that the covered maps of genus g with n edges are in bijection with pairs made of a plane tree with n edges and a bipartite unicellular map of genus g with n +1 edges. This generalises to ...

متن کامل

A bijection for covered maps, or a shortcut between Harer-Zagierʼs and Jacksonʼs formulas

We consider maps on orientable surfaces. A map is unicellular if it has a single face. A covered map is a map with a marked unicellular spanning submap. For a map of genus g, the unicellular submap can have any genus in {0, 1, . . . , g}. Our main result is a bijection between covered maps with n edges and genus g and pairs made of a plane tree with n edges and a unicellular bipartite map of ge...

متن کامل

Efficient enumeration of rooted maps of a given orientable genus by number of faces and vertices

We simplify the recurrence satisfied by the polynomial part of the generating function that counts rooted maps of positive orientable genus g by number of vertices and faces. We have written an optimized program in C++ for computing this generating function and constructing tables of numbers of rooted maps, and we describe some of these optimizations here. Using this program we extended the enu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014